[Return to Index]
References
- Anderson, B. D. O. Reverse-time diffusion equation models. Stochastic Processes and their Applications 12, 313-326 (1982).
- Bishop, C. M. Pattern Recognition and Machine Learning. (Springer-Verlag, 2006).
- Chen, T. On the Importance of Noise Scheduling for Diffusion Models. Preprint (2023).
- Chen, T. Q., Rubanova, Y., Bettencourt, J. & Duvenaud, D. K. Neural Ordinary Differential Equations. in Advances in Neural Information Processing Systems 31 (eds. Bengio, S. et al.) 6571-6583 (Curran Associates, Inc., 2018).
- Dhariwal, P. & Nichol, A. Diffusion Models Beat GANs on Image Synthesis. in Advances in Neural Information Processing Systems vol. 34 8780-8794 (Curran Associates, Inc., 2021).
- Hang, T. et al. Efficient Diffusion Training via Min-SNR Weighting Strategy. in Proceedings of the IEEE/CVF International Conference on Computer Vision 7441-7451 (2023).
- Ho, J., Jain, A. & Abbeel, P. Denoising Diffusion Probabilistic Models. in Advances in Neural Information Processing Systems vol. 33 6840-6851 (2020).
- Ho, J. & Salimans, T. Classifier-Free Diffusion Guidance. Preprint at https://doi.org/10.48550/arXiv.2207.12598 (2022).
- Hoogeboom, E., Heek, J. & Salimans, T. simple diffusion: End-to-end diffusion for high resolution images. in Proceedings of the 40th International Conference on Machine Learning 13213-13232 (PMLR, 2023).
- Johnson, N. L., Kotz, S. & Balakrishnan, N. Continuous Univariate Distributions, Vol. 1. (Wiley-Interscience, 1994).
- Karras, T., Aittala, M., Aila, T. & Laine, S. Elucidating the Design Space of Diffusion-Based Generative Models. in Advances in Neural Information Processing Systems vol. 35 26565-26577 (2022).
- Kingma, D. P. & Welling, M. Auto-Encoding Variational Bayes. in International Conference on Learning Representations (2014).
- Kingma, D., Salimans, T., Poole, B. & Ho, J. Variational Diffusion Models. in Advances in Neural Information Processing Systems vol. 34 21696-21707 (Curran Associates, Inc., 2021).
- Liu, L., Ren, Y., Lin, Z. & Zhao, Z. Pseudo Numerical Methods for Diffusion Models on Manifolds. in International Conference on Learning Representations (2022).
- Lu, C. et al. DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps. in Advances in Neural Information Processing Systems vol. 35 5775-5787 (2022).
- Lucic, M., Kurach, K., Michalski, M., Gelly, S. & Bousquet, O. Are GANs Created Equal? A Large-Scale Study. in Advances in Neural Information Processing Systems 31 (eds. Bengio, S. et al.) 700-709 (Curran Associates, Inc., 2018).
- Nichol, A. Q. & Dhariwal, P. Improved Denoising Diffusion Probabilistic Models. in Proceedings of the 38th International Conference on Machine Learning 8162-8171 (PMLR, 2021)
- Salimans, T. & Ho, J. Progressive Distillation for Fast Sampling of Diffusion Models. in International Conference on Learning Representations (2022).
- Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N. & Ganguli, S. Deep Unsupervised Learning using Nonequilibrium Thermodynamics. in Proceedings of the 32nd International Conference on Machine Learning 2256-2265 (PMLR, 2015).
- Song, Y. & Ermon, S. Generative Modeling by Estimating Gradients of the Data Distribution. in Advances in Neural Information Processing Systems 32 (eds. Wallach, H. et al.) 11895-11907 (Curran Associates, Inc., 2019).
- Song, J., Meng, C. & Ermon, S. Denoising Diffusion Implicit Models. in International Conference on Learning Representations (2021).
- Song, Y. et al. Score-Based Generative Modeling through Stochastic Differential Equations. in International Conference on Learning Representations (2021).
- Song, Y., Dhariwal, P., Chen, M. & Sutskever, I. Consistency Models. in Proceedings of the 40th International Conference on Machine Learning 32211-32252 (PMLR, 2023).
- Song, Y. & Dhariwal, P. Improved Techniques for Training Consistency Models. Preprint (2023).
- Vaswani, A. et al. Attention is All you Need. in Advances in Neural Information Processing Systems 30 (eds. Guyon, I. et al.) 5998-6008 (Curran Associates, Inc., 2017).
- Vincent, P. A Connection Between Score Matching and Denoising Autoencoders. Neural Computation 23, 1661-1674 (2011).
- Zhang, Q. & Chen, Y. Fast Sampling of Diffusion Models with Exponential Integrator. in International Conference on Learning Representations (2023).